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Summary - The estimation of genetic and environmental maternal effects by restricted
maximum likelihood was considered for juvenile body weight (JBWT) data on 139 534
and 174 668 broiler chickens from two populations. Of the biometrical models usually
assumed in the estimation of maternal effects (’reduced Willham’ models), a genetic model
allowing for direct and maternal genetic effects with a covariance between them and a
permanent environmental maternal effect provided the best fit. The maternal heritabilities
(0.04 and 0.02) were low compared to the direct heritabilities (0.32 and 0.27), the direct-
maternal genetic correlations (rAM) were negative and identical for both strains (- 0.54)
and environmental maternal effects of full sibs (0.06 and 0.05) were approximately a
factor of two greater than maternal half sibs (0.03 and 0.02). A possible environmental
dam-offspring covariance was accounted for in the mixed model by (1) estimation of the
covariance between the environmental maternal and the environmental residual effects

(cEC) and (2) a maternal phenotypic effect through regression on the mother’s phenotype
(Fm, ’Falconer’ model). Whilst increasing the likelihoods considerably, these extended
models resulted in somewhat more negative rAM values owing to positive estimates of CEC
(0.04-0.08 and 0.03-0.09) and Fm (0.01-0.14 and 0.01-0.11). A more detailed fixed effects
model, accounting for environmental effects due to individual parental flocks, reduced
estimates of rAM (- 0.18 to - 0.33). Results suggested a limited importance of maternal
genetic effects exerting a non-Mendelian influence on JBWT. The present integrated
’Falconer-Willham’ models allowing for both maternal genetic (co)variances and maternal
action through regression on the mother’s phenotype in a mixed model setting might offer
attractive alternatives to the commonly used ’Willham’ models for mammalian species
(eg, beef cattle) as was illustrated by their superior goodness-of fit to simulated data.
broiler chickens / juvenile body weight / maternal effects / restricted maximum
likelihood / animal model
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Résumé - Modèles d’estimation des effets maternels sur le poids corporel jeune
des poulets de chair. L’estimation des effets maternels génétiques et non génétiques
sur le poids jeune (JBWT) a été effectuée par maximum de vraisemblance restreinte sur
139 534 et 174 668 données provenant de deux populations de poulets de chair. Parmi les
modèles habituellement utilisés dans l’estimation des effets maternels (modèles «réduits» »
de Willham), le meilleur ajustement a été obtenu avec un modèle génétique permettant
des effets génétiques directs et maternels corrélés ainsi qu’un effet maternel permanent
non génétique. Les héritabilités maternelles (0, 04 et 0, 02) ont été faibles en comparaison
des héritabilités directes (0,32 et 0,27), les corrélations génétiques entre effets directs et
maternels (rAM) ont été négatives et identiques pour les deux souches (- 0,54), les effets
maternels non génétiques pour les pleins frères (0,06 et 0,05) ont été environ deux fois
plus grands que pour les demi-frères (0,03 et 0,02). On a tenu compte d’une covariance
non génétique possible entre mère et produit dans le modèle mixte i) en estimant la
covariance entre les effets maternels non génétiques et les effets résiduels non génétiques
(uEC) et ii) en introduisant un effet maternel phénotypique au travers de la régression
sur la phénotype de la mère (Fm dans le modèle de Falconer). Bien qu’ils augmentent
considérablement les vraisemblances, ces modèles étendus ont abouti à des valeurs encore
plus négative de rAM à cause d’estimées positives de QEC (0, 04 à 0, OS et 0, 03 à 0, 09) et
FIn (O,Ol à 0,14 et O,Ol à 0,11). Un modèle plus dëtaillë pov,r les effets fixés tenant compte
des effets de milieu propres aux troupeaux parentaux a réduit les estimées de rpM (- 0,18
à - 0,33). Les résultats ont suggéré une importance limitée des effets maternels génétiques
non mendéliens sur JBWT. Les modèles intégrés «Falconer- Willham» » permettant à la
fois des co(variancés) maternelles génétiques et une action maternelle via le phénotype de
la mère dans un modèle mixte pourraient offrir des alternatives intéressantes aux modèles
de « Willham» couramment utilisés pour les mammifères (par exemple, bovins allaitants)
comme il apparaît d’après leur meilleur ajustement à des données simulées.

poulet de chair / poids juvénile / effets maternels / maximum de vraisemblance
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INTRODUCTION

At present, estimation of maternal genetic variances in animal breeding is mainly
based on the biometrical model suggested by Willham (1963). This model of
maternal inheritance assumes a single (unobserved) maternal trait, inherited in
a purely Mendelian fashion, producing a non-Mendelian effect on a separate trait
in the offspring. For instance, the dam’s milk production and mothering ability
might exert a combined non-Mendelian influence on early growth rate of beef cattle
(Meyer, 1992a). The practical application of such models has been greatly facilitated
and hence encouraged by derivative-free IAM-REML programs of Meyer (1989), in
which estimation of genetic maternal effects according to Willham (1963) forms
a standard feature. Meyer (1989), however, uses a ’reduced’ model by assuming
absence of an environmental dam-offspring covariance, which is likely to improve
the precision of the often highly confounded components to be estimated but which
might at the same time lead to biased estimates of the correlation between the
direct and the maternal genetic effects (rAM) in particular (Koch, 1972; Thompson,
1976; Meyer, 1992a, b). Often the types of covariances between relatives available
in the data do not have sufficiently different expectations to allow all components
of Willham’s (1963) model to be estimated (Thompson, 1976; Meyer, 1992b). For
example, for a data set (of size 8 000) based on a genetic parameter structure typical



of a growth trait in beef cattle, Meyer (1992b) found that the environmental dam-
offspring covariance should amount to at least 30% of the permanent environmental
variance due to the dam before a likelihood ratio test would be expected to
distinguish it from zero. Greater data sets, however, including multiple generations
of observations and a variety of types of covariances between relatives might provide
sufficient contrast for the higher number of components in an extended model to
be estimated more precisely.

Falconer (1965) considered the case where the phenotypic value of the mother for
the character in question influenced the value of the offspring for the same character,
which results in an environmentally caused dam-offspring resemblance. To account
for this resemblance statistically, he included a partial regression coefficient in the
model, which related daughters’ to mothers’ phenotypic values in the absence of
genetic variation among the mothers. The genetic basis of the maternal effect is

ignored in such a model. Thompson (1976) investigated Falconer’s (1965) approach,
using maximum likelihood methods, as an alternative to Willham’s (1963) model
with low precision and high sampling covariances between some estimates.

Lande and Kirkpatrick (1990) showed that Willham’s (1963) model fails to
account for cycles of maternal effects as in Falconer’s (1965) model. Robinson
(1994) demonstrated by simulation that a negative dam-offspring regression, as
in Falconer’s model with a regression coefficient of - 0.2, was fitted by Willham’s
model partially as a negative rAM and as a permanent environmental effect

using Meyer’s IAM-REML programs. Consequently, she argued that such negative
covariance might explain the often disputed negative rAM estimates.

Because of these mutual limitations it might be interesting to integrate Falconer’s
and Willham’s models in a mixed model setting to enable consideration of both the
genetic basis of the maternal effect and the maternal action through regression on
the phenotype of the mother (corrected for BLUE solutions of fixed effects).
A great amount of work has been carried out on the estimation of maternal

effects among domestic livestock, in particular for mammals (see Willham, 1980;
Mohiuddin, 1993; Robinson, 1996). In poultry, however, where maternal (egg)
effects on juvenile broiler body weight (JBWT) are apparent (Chambers, 1990),
no major attempts have been made to partition this maternal variance into genetic
and environmental components. Also the sign and magnitude of rAM has not been
estimated according to Willham’s (1963) model. Although many studies have shown
a positive (phenotypic) effect of egg weight on JBWT (Chambers, 1990). Such
poultry data may be suitable for the estimation of maternal genetic variances owing
to their size and structure with many offspring per dam and often many recorded
generations available.

The objectives of the present study were to investigate (1) the effect of estimation
of the environmental dam-offspring covariance on the other (co)variance compo-
nents and resulting parameters (particularly rAM) and on the likelihood of the size-
able data sets for JBWT in two meat-type chicken populations by IAM-REML
methods and (2) the goodness-of-fit of Falconer-type and integrated Falconer-
Willham models to simulated data and these JBWT data and the resulting es-
timated components and parameters.



MATERIAL AND METHODS

Data

Field data

The data on JBWT originated from two commercial broiler populations. Summary
statistics are illustrated in table I. The data on strains A and B represented
approximately six and three overlapping generations, respectively. Male and female
JBWT SDs were somewhat heterogeneous, presumably, because of a scale effect.
Some heterogeneity of raw CVs was apparent, but disappeared after precorrection
for effects of hatch week and age of the dam. Some data structure aspects are shown
in table II.

Simulated data

Data were simulated to study the goodness-of-fit of the various models to estimate
maternal effects (see the following) and the differences between simulated and
estimated (co)variance components. The genetic model was similar to the one
assumed by Robinson (1994), with a direct genetic effect, a maternal genetic effect



and a residual effect, sampled from N(0,100), N(0,20) and N(0,280), respectively.
Furthermore, a regression of - 0.1 on the phenotype of the dam was assumed. The
base population consisted of 110 animals. Ten sires were mated to 100 dams in a
nested design with ten full sib offspring produced by each sire-dam combination.
Parental candidates were randomly assigned from these thousand offspring to
generate the next generation. This hierarchical mating scheme was repeated for
eight generations.

Models of analyses

Effects of location

Fixed effects fitted were hatch week (198 and 90 levels for strains A and B,
respectively), sex (two levels) and age of the dam when the egg was laid in 3-week
intervals (seven levels) representing effects on eggs (eg, size).

Considering male and female JBWT as separate traits

Table I gave some evidence that the differential SDs of both sexes are due to the

dependence of variance and mean, since adjusted CVs were homogeneous. To fully
justify evaluation of male and female JBWT as one trait in the analysis of maternal
effects, however, the two sexes were considered as separate traits in a bivariate
analysis in order to investigate the genetic relationship between these traits and
hence the importance of segregation of sex-linked genes affecting JBWT in the
present broiler populations. In matrix notation the bivariate model can be presented
as:

r.. 1

where, for trait i (i = 1,2; representing JBWT on males and females), yi is a

vector of observations; bi is a vector of fixed effects; ai is a vector with random
additive genetic animal effects; ci is a vector with random maternal permanent
environmental effects; ei is a vector with random residual effects; and Xi, Zai and
Zct are incidence matrices relating the observations to the respective fixed and
random effects. The assumed variance-covariance structure is:

where o, 2.a2. and o, 2. are the additive genetic, the maternal permanent environ-
mental and the residual environmental variances for trait i; aa12 and 0&dquo;c12 are the



corresponding covariances between the male and female JBWT; A is the relation-
ship matrix; Ii is an identity matrix; and B is a rectangular matrix linking male
and female progeny records to the dam. The algorithm of Thompson et al (1995)
was used. Their method reduces the model to univariate forms by scaling and trans-
formation, which diminishes dimensionality and speeds up convergence.

A ’reduced’ Willham model

Initially six different genetic models, applied by Meyer (1989), were considered for
both strains.

Table III exhibits the random effects fitted and the (co)variance components
estimated in each model. Model 1 was a purely direct additive model, while model
2 (with sub-models a,b and c) allowed for dams’ permanent environmental effects
in addition. This environmental maternal component was slightly expanded by

distinguishing between a covariance of maternal half sibs (c Hs, 2 model 2a) and fullsibs (cFS, model 2b). Fitting both simultaneously was considered also (model 2c).
When only fitting c 2s then c 2s = C2 (see table III), since covariance amongst
maternal HSs also applies to FSs. Model 3 included a maternal genetic effect
in addition to the animals’ direct genetic effects, assuming zero direct-maternal
covariance (<7AM)- Model 4 was as model 3 but allowed for a non-zero <7AM. Models
5 and 6 (a, b and c) corresponded to models 3 and 4, respectively, but included



maternal permanent environmental effects in addition (on maternal HSs and/or
FSs). The sub-models (1-5) follow from the full mixed linear model (model 6),
which in matrix notation is:

where y, b, uA, uM, c and e are vectors of observations, fixed effects, direct breed-
ing values, maternal breeding values, random common maternal permanent en-
vironmental effects, and random environmental residual effects, respectively; and
X, ZA, ZM and Zc are incidence matrices relating the observations to the respective
fixed and random effects. The variance-covariance structure is

where afl represents either the covariance between FSs or maternal HSs.

An ’extended’ Willham model

Throughout the previous models a zero direct-maternal environmental covariance
(aEc ) was assumed, which is commonly practiced. However, the possibility of a non-
zero QEC is real. The existence of a negative QEC, for example, has been suggested
(eg, Koch, 1972). Ignoring a (non-zero) QEC is likely to bias the parameters involved
in the estimation of maternal effects. In particular <7AM might be biased in a
downward direction when ignoring a (TEC that is negative. Therefore, aEc was
included in all models in a second series of runs (models 7-12) to study changes
in estimated components and parameters and goodness-of-fit. The (co)variance
structure now is

Consequently, three maternal environmental covariances were conceivable, a
covariance amongst maternal half sibs, a covariance amongst full sibs and a
covariance between dam and offspring. When only fitting CEC then 4s = C2 H = CEC,
since CEC also applies to the covariance amongst maternal HSs and FSs.

The (direct) Falconer model

Falconer (1965) suggested a model including a maternal effect (Fm) as linear func-
tion of the mother’s phenotype (see outline in Appendix). Thompson (1976) derived
the expectations for QP and a£ in terms of Fm for the sources of (co)variation fre-
quently used for animal breeding data, making inferences about y rather than



(y - Fmy’). In a mixed model setting this model (ignoring the dominance compo-
nent) can be formulated in matrix notation as

where yp is a vector with the dams’ observations and Xp is the incidence matrix
relating these observations to the respective fixed effects.

An integrated Falconer-Willham model

To account for possible maternal pathways through the dam’s phenotype as well
as the genetic origin of maternal effects an integrated approach was investigated in
a third series of runs (models 13-18). The matrix representation of the full linear
integrated Falconer-Willham model that was considered is

which is Willham model (2) and Falconer model (3) amalgamated. The Appendix
provides a derivation of the variance of y.

For models with a maternal effect the fraction of the selection differential that
would be realised if selection were on phenotypic values (hA+M), ie, the regression
of the sum of direct and maternal genotypes on the phenotype was calculated as
(Willham, 1963):

where QA is the direct additive genetic variance, aM is the maternal additive genetic
variance and up is the phenotypic variance.

Methods of analyses

Henderson-III and offspring-parent regression

Henderson’s method III was applied to the data to produce estimates of variance
due to sires (patHS) and sire-dam combinations (FS). A weighted average of
the individual generation estimates was obtained by weighing them inversely
proportional to their sampling variances. Covariances between offspring and sire
and dam, respectively, were obtained by weighted regression analyses (with the
degrees of freedom as weights) of average offspring on parental performances, which
were both deviated from OLS expectations based on the effects of location. The
sources of (co)variation were equated to their expectations and the resulting system
of linear equations was solved by multiple regression for a series of values for Fm,
thereby locating the Fm that resulted in minimisation of the mean square error
or rather maximisation of the likelihood and the ’best’ estimates for o,2 and a A 2
(Thompson, 1976).



IAM-REML

IAM estimates of the (co)variance components for both data sets were obtained by
a derivative-free REML algorithm based on programs written by Meyer (1989). The
programs were adapted to include an environmental dam-offspring covariance com-
ponent and to enable the estimation of Falconer’s maternal phenotypic regression,
either on its own or integrated in Willham’s model. Equations in the mixed model
matrix (MMM), the coefficient matrix and the RHS’s augmented, were reordered
using a multiple minimum degree reordering (George and Liu, 1980) to minimise
fill-in, before Gaussian elimination was performed on MMM. The Downhill Simplex
method (Nelder and Mead, 1965) was used to locate the maximum log likelihood
(log L). Convergence was assumed when the variance of the function values (- 2log
L) in the Simplex was less than 10-g. For a series of values for Fm, the likelihood of
the remaining parameters in the Willham model was maximised given these values
of Fm. For the first Fm maximisation run the scaling factor for the residual variances
of animals with missing maternal observations (sF, see Appendix) was set to unity
since sF is a function of Fm and the (co)variances to be estimated. A second run was
performed, for every value of F,T&dquo; incorporating a scaling factor as deduced from the
estimated (co)variance components and Fm (see equations A2 and A3 in Appendix).
In this second run the likelihood was remaximised and adjusted for the changes in
the projected data and the variance component estimates. A second update of sF
and subsequent maximisation run led to only negligible changes in likelihood and
was, hence, not performed for these analyses. For every other F,T, maximisation run
the initial SF value was chosen as a proportion of the previous maximised sF value.
The Falconer parameter Fm maximising the likelihood was estimated by quadratic
approximation of the profile likelihood surface of Fm. The accompanying param-
eters in the Willham model had maximum likelihood conditional to this value of
Fm.

Likelihood ratio tests, with error probability of 5%, were carried out to determine
whether maternal genetic or permanent environmental effects contributed signifi-
cantly to the phenotypic variance in JBWT for both strains.

Furthermore, the asymptotic sampling variances of 0&dquo; AM (models 6c and 12c)
and QEC (model 12c) were obtained by fitting quadratic Taylor polynomials to
their profile log-likelihood curvatures (Smith and Graser, 1986). The profile likeli-
hoods were L,,(O’ 2 , a2 C72 O&dquo;!IO&dquo; AMr¡, y), L,7 (or2 la2 !Cr/! OEC?7, 0’210’AM,, Y)
and 2 a 2 a2 , o-g JUECN, Y) for QAM in models 6 and 12 and for UEC in model

12, respectively, where h represents the fixed point for which the log-likelihood was
maximised.

RESULTS

Sex-linked variation in JBWT

Results of the bivariate analyses considering male and female JBWT as different
traits are shown in table IV. Differences in male and female phenotypic variances
were substantial as might be expected because of the large differences in mean per-
formances of both sexes (table I). Although not significant, the female heritabilities



were somewhat greater than the male heritabilities. In birds the females are the het-
erogametic sex. Female offspring get their sex-linked genes only from their fathers.
Therefore, if significant sex-linkage is present, higher male heritabilities might be
anticipated, which was not the case. Also, genetic relationships might be expected
to deviate markedly from unity. However, the correlations were very high, although
statistically just different from unity. We can now with more confidence say that
sex-linked genes did not notably contribute to the differential variation of male and
female JBWT in the present populations. Logarithmic transformation was applied
to alleviate the variance-mean dependency. The comparison of genetic parameters
of several models involving maternal effects did not reveal any important discrepan-
cies between the data on the arithmetic and the geometric scales. Hence, analyses
of the data on the arithmetic scale will be presented.

Conventional estimation of (co)variances, heritabilities and the Falconer
parameter

Heritability estimates based on between sire variances (paternal HS) were equal for
both populations (0.21) and very similar to the offspring-sire regression estimates
(0.20 and 0.19 for populations A and B, respectively) (see table V).

The heritability estimates based on FSs and offspring-dam regression were
considerably higher. For population A the FS estimate was somewhat higher
than the offspring-dam estimate, whereas population B showed the reverse. The
components were equated to their expectations for several Fm values (table VI). The
’optimum’ Fm estimates were positive with 0.03 and 0.07 for populations A and B,
respectively. The derived heritability estimates were 0.21 and 0.19 for populations
A and B, respectively.



IAM-REML estimation of maternal genetic parameters

Simulated data

The goodness-of-fit of Willham, Falconer and integrated models were tested to
simulated data based on an integrated Falconer-Willham model, with a direct and
maternal genetic effect with zero covariance and a maternal phenotypic effect,
assumed before by Robinson (1994). The results are shown in table VII. The
likelihoods were deviated from model 1, which represented the appropriate genetic
model. The estimated components were close to simulated components for model 1.
Model 2, representing a Willham model with direct and maternal genetic effect with
non-zero covariance and a maternal environmental component, estimated a c2-effect
of 0.03 and a significantly negative estimate for QAM resulting in a negative rAM
of - 0.56, which was observed also by Robinson (1994). The likelihood ratio test
adjudged the fit to be significantly worse than model 1 at a confidence level of 99%.
The likelihood of the Falconer model, ignoring the genetic basis of the maternal



effect, was greater than model 2 but significantly less than model 1 with P < 0.05.
The ’full’ Falconer-Willham model (model 4), assuming a non-zero QAM, appeared
to fit better than the true model, although the difference was not significant at P =
0.05. The ’extended’ Willham model (model 5) ’picked up’ most of the negative
environmental covariance between dam and offspring as such. However, the effect
was partially fitted as a negative (TAM leading to an rAM value of - 0.22. The

goodness-of-fit of model 5 was similar to the true model.

Field data

Estimated phenotypic variances and genetic parameters for JBWT of both strains
under a series of different genetic models together with their likelihoods are sum-
marised in tables VIII and IX. Clearly, very significant increases in log-likelihood
(over model 1) demonstrate that both environmental and genetic maternal effects
exist for both strains. Generally, genetic parameters were quite similar over strains,
despite distinct differences in selection history.

Fitting a maternal permanent environmental effect (with the pertaining variance

component as proportion of QP being referred to as C2 Hs for maternal half sibs (HSs)
and 48 for full sibs (FSs)) in model 2 resulted in highly significant increases in the
likelihood for both strains. Estimating a c2 for HSs and FSs simultaneously resulted
in a significantly better fit with the effect of FSs being about a factor of two greater.
The presence of a maternal heritability (m2) in addition to h2 (model 3) was much
more likely than model 1, but did not fit the data as well as model 2. Allowing
for a non-zero direct-maternal genetic covariance (presented as a proportion of o, 2
CAM) in model 4 just increased the likelihood significantly (over model 3) for strain
A. The likelihood of model 4 for strain B was, however, not significantly different
from model 3 based on a likelihood ratio test (P > 0.05). Compared to model 3,





m2 estimates in model 5a decreased substantially for strain A (from 0.07 to 0.03)
and for strain B (from 0.05 to 0.01); and thus the maternal variance seemed to
be more of a (permanent) environmental than genetic origin. Estimating (YAM in

addition to model 5 (model 6) showed a similar pattern for both strains in terms
of the reduction in m2 compared to model 4. Most noticeable, however, was that



this smaller m2 parameter was accompanied by a much more negative CAM and
consequently rAM relative to model 4.

Likelihoods increased considerably by adopting CEC. All the cEc estimates were
positive and consequently the estimates of rAM tended to be more negative and
heritability estimates dropped somewhat. For the models 12a and 12c the m2
estimate increased by a factor of 1.5 to 2 (from 0.04 (0.04) to 0.07 (0.06) in

population A and from 0.03 (0.02) to 0.05 (0.04) in population B). Assuming a
zero CAM and a non-zero cac (model 11) fitted the data of population B better
than the reverse assumption, a non-zero CAM and a zero CEC (model 6). This was
not the case for population A. However, the highest likelihood for both populations
was attained by assuming both these covariances to be non-zero (in model 12).

All the Fm values were positive (in models 13-18) as were the CEC estimates
in models 7-12. The models without a c2_effect (models 13, 15 and 16) did not
fit as well as their counterparts fitting CEC (models 7, 9 and 10, respectively).
The Fm estimates were generally similar for both populations. The improvements
in likelihood relative to the models 7-12 were greater for population A. The Fm
estimates for model 14b were similar to the estimates based on multiple regression
of the analysis of variance components (table VII). Generally, m2 and CAM estimates
increased somewhat and led to more negative rAM values compared to the models
including CEC.

Estimation of sampling variation of CAM and cEc

Approximate profile likelihood and (derived) sampling variances for CAM (in
models 6c and 12c) and cac (in model 12c) were investigated to obtain a bet-
ter insight into the accuracy of CAM in model 6c (assuming zero aEc) compared to
the accuracy that could be attained when the potentially highly confounded com-
ponents CAM and CEC (Meyer, 1992b) were estimated together (model 12c), using
the present sizeable data sets.

Figure 1 depicts the quartic Taylor polynomial fitted to seven points of the profile
likelihood for CAM (with R2 = 100%). The resulting approximate profile likelihood
shows that CAM is highly unlikely to be positive for both strains.

The approximate profile likelihood curvatures for CAM and CEC (both quartic
as well with R2 = 100%) in model 12c are shown in figure 2a and b, respectively.
Once again, profiles show a similar pattern for both strains and also the profiles
for CAM and CEC act fairly similarly to the images (with opposite sign for the
values) of CEC and c,!M, respectively, which pointed towards the presence of a high
negative sampling covariation between these components. The figures illustrate the
low likelihood of a positive CAM on the one hand and the very low likelihood of a
negative CEC on the other hand.

The sampling errors approximated from the above profile likelihood curves are
exhibited in table X. Generally, the direct-maternal covariance components were
accurately estimated for both strains, with the sampling error of CEC being roughly
half the size of the approximation for CAM. The accuracy of the CAM estimates
for models 6c and 12c were similar, hence the sampling correlation of CAM with
CEC (in model 12c) did not hinder much the precise estimation of these components
for the present data. Approximate sampling errors were also similar for both strains,





which was illustrated by the similar curvatures of the profile likelihoods for strains
A and B.

DISCUSSION

Sex-linkage

The segregation of sex-linked genes affecting JBWT was found to be small, which
agrees with results summarised by Chambers (1990). Owing to their hemizygous
form these genes are likely to be driven towards fixation, especially in meat-type
poultry with a long and extensive selection history for growth traits. The genetic
correlation between male and female JBWT performance was just significantly
different from unity, but this could easily be attributable to endocrine differences
between both sexes.

Analysis of variance

The estimates of Fm, found while equating the (co)variance components to their
expectations and minimising MSE, were small (0.03 and 0.07) and similar to the
values (0.04 and 0.06) found for its equivalent in a mixed model setting, model 14b.
The conventional h2 estimates were, however, substantially lower (0.21 versus 0.30
and 0.19 versus 0.24 for the populations A and B, respectively). The difference in
estimates was larger for population A. The data on population A represented six
generations (three more than population B) and hence the numerator relationship
matrix accounted for more selection in this longer time period.

Maternal effects estimation in a mixed model setting

It was shown that inclusion of a maternal permanent environmental effect provided
a much better fit to the data (over model 1) and that inclusion of any more effects,
although statistically significant, gave relatively a much smaller additional increase
in log L (over model 2). This was reflected by the direct heritability estimates, which
fluctuated within a rather narrow range for models 2-18 (except for model 13)
compared to the heritability estimates for model 1. Consequently, the smaller
additional increases in log L (over model 2) originated primarily from a ‘reshufHe’



of the maternal variance over environmental and genetic maternal (co)variances,
although some cross-substitution of the direct additive genetic variance and hence
the direct heritability with the direct-maternal genetic covariance, in particular,
was likely to occur (Thompson, 1976; Meyer, 1992b). Dominance might have some
effect on estimates of maternal effects, although dominance was found to be of little
importance in broiler body weight (Koerhuis et al, 1997).

REML combines information on various collateral relatives and various offspring-
parent regressions in order to obtain one efficiently pooled estimate for h2 with
minimum variance (Thompson, 1977; Hill, 1988). The large reduction in the h2 2
estimate in model 2 compared to model 1, accompanied by relatively small c2 2

estimates, suggested a high weighting of the between dam family h2 estimate,
relative to the between sire family h2 estimate. This might have been expected with
such a large number, on average, of large dam families in the data (table II), leading
to very accurate estimates on between dam family variance. A lower weighting of
dam family information is expected for domesticated species in general and for
beef cattle in particular, where dam families are much smaller (eg, Meyer, 1992a).
The h2 estimates in model 2 should be expected to be closer to the Henderson-
III sire component h2 estimates. Chambers (1990) pooled 53 sire component h2 2
estimates from 23 studies resulting in an average value of 0.41. The present
smaller h2 estimates might be explained by the much longer and more extensive
selection period the present broiler populations have undergone in comparison to
the populations used in many experiments, bearing in mind that the vast majority
of these studies was conducted two to three decades ago. The smaller variance for
strain B might, beside genetic strain differences, be due to the lesser extent of
correction for reduction in variance caused by selection as only three generations
were available for this strain compared to six generations for strain A. Furthermore,
Chambers’ (1990) summarised estimates were often based on weights at older ages
(8, 9 or 10 weeks). It is not uncommon for heritabilities to increase with age of

weight owing to diminishing maternal influences.

Allowing for (JAM, resulted in a value of rAM that was considerably negative
in model 6. This was somewhat surprising since we expected a positive genetic
correlation between JBWT and egg weight (Kinney, 1969; Koerhuis and McKay,
1996), which is believed to increase the offspring’s JBWT. Fitting both CAM and
aEC (model 12), to account for possible downward bias of (JAM (Koch, 1972;
Meyer, 1992b), resulted in slightly more negative rAM estimates owing to positive
estimates of UEC - Cantet et al (1988) also obtained large negative estimates of (JAM
accompanied by positive estimates of UEC for growth traits in beef cattle. However,
Cantet et al (1988) found negative estimates for Fm (in the range - 0.15 to - 0.25),
whereas our estimates of Fm were positive just like OEc estimates and led to even
more negative rAM estimates. Cantet et al (1988) had a small data set and used
conventional methods, equating separately estimated covariances between relatives
to their expectations and solving the resulting system of linear equations. This
ignores the fact that the same animal might have contributed to different types
of covariances and that different observational components might have different
sampling variances, ie, combining information in a non-optimal way (Cantet et al,
1988; Meyer, 1992b).



For our JBWT data, the genetic variance of maternal origin could, for the greater
part, relate to egg (shell) quality rather than egg size, which could explain the
negative sign of <TAM- Koerhuis et al (1997), following suggestions by Lande and
Kirkpatrick (1990), fitted individual maternal pathways related to the egg as co-
variates in an offspring-parental regression model, to investigate their importance
in causing maternal variation in JBWT. Those results implied a negative partial
maternal effect of egg weight loss between the start and the 18th day of incubation,
and are in agreement with Robinson et al (1993) who reported a negative relation-
ship between body weight and egg (shell) quality, an inferior quality giving rise to a
greater loss of weight. However, this negative partial effect was offset by a positive
partial maternal effect of egg weight at the 18th day of incubation, and hence the
aggregate maternal effect on JBWT was found to be small (Koerhuis et al, 1997).
A negative <7AM would decrease the efficiency of phenotypic selection for JBWT

as expressed by the low hA+M estimates for the models 12 and 18 with overall

superior log L. Selection on maternal breeding values for JBWT may, however, not
be very effective owing to the low maternal heritability. Moreover, it might not
be the preferable approach since egg (shell) quality characteristics can readily be
selected for directly with higher accuracy and predictability (Koerhuis et al, 1997)
and less delay, because the expression of the maternal effect, although occurring
later in life, would not lag a generation behind the direct effect as is normally the
case (Willham, 1980). Nevertheless, the presented amalgamation of Falconer and
Willham models in a mixed model setting might offer attractive alternatives to
Meyer’s (1989) models for, eg, beef cattle as was illustrated by results based on
simulated data (table VII).

Meyer (1992b) studied the sampling behaviour of REML estimates of (co)varian-
ce components due to additive genetic and environmental maternal effects. She
showed that sampling correlations between estimates were high and that sizeable
data sets are required to allow reasonably accurate estimates to be obtained.
Results in the present study, using large data sets, illustrated the possibility of
good sampling properties for both the genetic and environmental direct-maternal
covariance components. Hence, these poultry data sets might also increase the scope
for the application of more detailed models, eg, estimating dominance variance and
variance due to new mutation in addition to genetic and environmental maternal
effects, yet providing sufficient contrast for the often highly correlated genetic
parameters involved, to be estimated precisely. More research is needed, however,
with regard to the practicalities of such detailed maternal effects (and other) models
for use in genetic evaluation methods performed by breeders.

The effect of more detailed fixed effect structures

Robinson (1994, 1996) showed that additional variation (eg, sire x year) unac-
counted for in the model affected estimates of maternal effects. Differences in re-
sults from Mackinnon et al (1991) and Meyer (1992a) for the same data suggested
sensitivity of maternal effects to different fixed effects models. In our data different
parental flocks of different ages and farms contributed offspring to one hatch week.
The age difference was accounted for in the model, but more specific maternal envi-
ronmental flock effects were ignored. The parental flocks contributing to every hatch



were identified. The effect of flock nested within hatch on the genetic parameters
in models 1 and 2 was small (not presented). The effect on the genetic parameters
for the more comprehensive models (5c, 6c, llc, 12c, 17c and 18c) was investigated
for both populations. The phenotypic and direct and maternal genetic variances
were reduced considerably and were accompanied by rAM estimates much closer
to zero (see table XI). The h2 estimates were now very similar to the estimates of
hA+M. This limited importance of maternal effects exerting a non-Mendelian influ-
ence on JBWT is in closer agreement with the results obtained by Koerhuis et al
(1997). The choice of the fixed effects model appears to be paramount for detailed
maternal effects models, but the increase in computing time (four-fold increase per
likelihood evaluation for the present data) might often prevent more refined fixed
effect structures to be occupied.
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APPENDIX

The (direct) Falconer model

Falconer (1965) suggested that a model for the phenotype of an individual, y, might
be expressed as

where A is the individual’s breeding value; Fmy’ is the maternal effect as linear
function Fm of the mother’s phenotype y’; D is the individual’s dominance devi-
ation; C is the effect of environmental factors common to full sibs that are not
included in the maternal effect; and E represents all other environmental effects.
The coefficient FR, is a partial regression coefficient relating daughters’ to mothers’
phenotypic values in the absence of genetic variation among the mothers. When D,
C and E are ignored and mother’s phenotype is represented by y’ = A’ + Fmy&dquo;,
the expectation of the dam-offspring covariance is

which is a geometric series with common ratio 1/2 FR, that can be summarised

as ( Fm F,) (J A 2 and hence cov(y, y’) = - 1 (J A 2 + 2 2F ) (J A 2 + Fm (Jp (Falconer,2 2 - m 
- A 2 2 ( A p

1965; Thompson, 1976). The variance of y in model [Al] (ignoring dominance) can
be described as



and thus

In a mixed model setting a complication arises when considering estimation of
the Falconer parameter (Fm). This is due to the offspring of base animals being
uncorrected for F,,,(yp - Xpb) since their dams’ observations are unknown, which
creates extra noise among these individuals. These animals’ residual variances
need to be scaled to produce constant variance across all individuals. The residual
variance of those individuals is

from which the scaling factor (sF) emerges as a function of the variance components
and the parameter Fm:

Without C in model 4 the term F!&OElig;!/&OElig;! cancels out.
This argument assumes that the only adjustment necessary is because the

phenotypic variance changes. However the genetic structure is slightly changed.
The additive genetic variance associated with a value uncorrected for a maternal
phenotypic variance, Yuc, is CAC&OElig;Ã with cAC = (1 + 2Fm/(2 - Fn,))/(1 - Fm), and
the genetic covariance of Yuc with a corrected tth generation descendant is CACto,2 A
with cact = [2/(2 - -Fm)]2!. This can be simply incorporated in the linear model
using y = A + Fn,A’° + D + C + E where A&dquo; is an accumulated additive value



with Alc = A’ + FmA&dquo; + FmA&dquo;’+... etc, with var A’c = CACa’ and the covariance
between A’c and A’ is cACmA. Terms in the relationship matrix A*, relating A’C
and other genetic values, can be constructed using the usual rules of relationship
matrices. The inverse matrix can be constructed using rules similar to Henderson
(1976). The diagonal term for base dams is cA!. The contribution of each individual
i, with known parents to At-1 is a matrix (-xsi, )xai, l)/m¡l( -Xsi, -Xdi, 1) added
to the submatrix of A-1 representing sire, dam and the individual. The coefficients
xsi and xdi are genetic regressions of individual on parent so xsi = 1/2 and
xdi = (1 - Fm)/(2 - Fm) or 1/2 depending on whether the dam is a base
dam or not. The term mi is the pseudo Mendelian sampling variance and is
?7! = 1 - nbi(l - Fm)/4 - Fm) - (2 - nbi)/4 with nbi = 1 or 0 if the dam is a
base dam or not. With the adjustment to the model the scaling factor reduces to
SFc = (FM20,2 + &dquo;d + 1)/(l _ FM2)_
An integrated Falconer-Willham model

The variance of y in model 4 (in main text) amounts to



The factor (sF) to scale the residual variances of the individuals with their dams’
observations missing becomes

Again this adjustment is based on phenotypic grounds. There !are small additions
to the maternal variance and additive-maternal covariance terms. These can be
simply incorporated in the main model by using y = A + FmA’c + M’c + D + C + E
for individuals with unmeasured base dams, where M’c is an accumulated maternal
value which equals M’ + FmM&dquo; + FmM&dquo;’+ ... etc. The relationship matrix for M’C
and other maternal genetic variances is A*, the relationship matrix for A’c and
other additive values.


